Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
PLoS One ; 17(5): e0268767, 2022.
Article in English | MEDLINE | ID: covidwho-1862275

ABSTRACT

Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccine-elicited immunity, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring of vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Biotin , COVID-19/therapy , Humans , Immunization, Passive , Molecular Probes , Neutralization Tests , Pandemics , SARS-CoV-2/genetics , Saccharomyces cerevisiae/genetics , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
2.
Cell Rep ; 39(2): 110680, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1814235

ABSTRACT

Knowledge about the impact of prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the elderly on mRNA vaccination response is needed to appropriately address the demand for additional vaccinations in this vulnerable population. Here, we show that octogenarians, a high-risk population, mount a sustained SARS-CoV-2 spike-specific immunoglobulin G (IgG) antibody response for 15 months following infection. This response boosts antibody levels 35-fold upon receiving a single dose of BNT162b2 mRNA vaccine 15 months after recovery from coronavirus disease 2019 (COVID-19). In contrast, antibody responses in naive individuals boost only 6-fold after a second vaccine. Spike-specific angiotensin-converting enzyme 2 (ACE2) antibody binding responses in the previously infected octogenarians following two vaccine doses exceed those found in a naive cohort after two doses. RNA sequencing (RNA-seq) demonstrates activation of interferon-induced genetic programs, which persist only in the previously infected. A preferential increase of specific immunoglobulin G heavy chain variable (IGHV) clonal transcripts that are the basis of neutralizing antibodies is observed only in the previously infected nuns.


Subject(s)
Antibody Formation , COVID-19 , SARS-CoV-2 , mRNA Vaccines , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , BNT162 Vaccine , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Humans , Immunoglobulin G , Octogenarians , RNA, Messenger/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Vaccination , Vaccines, Synthetic , mRNA Vaccines/therapeutic use
3.
Science ; 376(6591): eabn8897, 2022 04 22.
Article in English | MEDLINE | ID: covidwho-1759268

ABSTRACT

The rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant and its resistance to neutralization by vaccinee and convalescent sera are driving a search for monoclonal antibodies with potent neutralization. To provide insight into effective neutralization, we determined cryo-electron microscopy structures and evaluated receptor binding domain (RBD) antibodies for their ability to bind and neutralize B.1.1.529. Mutations altered 16% of the B.1.1.529 RBD surface, clustered on an RBD ridge overlapping the angiotensin-converting enzyme 2 (ACE2)-binding surface and reduced binding of most antibodies. Substantial inhibitory activity was retained by select monoclonal antibodies-including A23-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309, and LY-CoV1404-that accommodated these changes and neutralized B.1.1.529. We identified combinations of antibodies with synergistic neutralization. The analysis revealed structural mechanisms for maintenance of potent neutralization against emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Cryoelectron Microscopy , Humans , Immunization, Passive , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
5.
Cell Rep Med ; 3(2): 100510, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1636907

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin Fc Fragments/immunology , SARS-CoV-2/immunology , Ad26COVS1/immunology , Ad26COVS1/therapeutic use , Adult , Aged , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , Cohort Studies , Cross Reactions , Female , HEK293 Cells , Humans , Jurkat Cells , Male , Middle Aged , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/immunology , THP-1 Cells , Treatment Outcome , Vaccination/methods
6.
Cell ; 185(1): 113-130.e15, 2022 01 06.
Article in English | MEDLINE | ID: covidwho-1588150

ABSTRACT

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by ∼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

7.
Prof Case Manag ; 26(6): 286-297, 2021.
Article in English | MEDLINE | ID: covidwho-1450477

ABSTRACT

PURPOSE OF STUDY: The specific aims of this study were to examine whether sociodemographic variables and medical-surgical diagnoses were associated with telephone follow-up (TFU) reach rates, emergency department visits, and hospital readmissions. PRIMARY PRACTICE OF SETTING: Acute care inpatient units in an academic medical center. METHODOLOGY AND SAMPLE: A correlational design was utilized, and a prospective medical record review of patients was conducted while implementing face-to-face prehospital discharge meeting interventions. The study sample (N = 176) included adult patients in two neurosurgical wards who were admitted between June 2016 and September 2016. Parametric and nonparametric tests were used to explore the balance between the intervention group receiving a face-to-face prehospital discharge meeting and comparison group receiving standard prehospital discharge care. Bivariate statistics were employed to determine associations between variables. RESULTS: A total of 15 sociodemographic and medical-surgical variables were used to correlate TFU reach rates, emergency department (ED) visits, and readmission rates. Educational attainment (p = .002), employment status (p = .014), parental status (p = .010), and hospital service (p = .039) had significant differences between the intervention and comparison groups. Results demonstrated an improved reach rate for the intervention group but despite the differences in the groups, phi and Cramer's V coefficients did not correlate any associations with TFU reach rate, ED visits, and readmission rates with sociodemographic and surgical variables. This outcome affirmed that despite the similarities and differences in the sample, a face-to-face meeting prehospital discharge is an effective intervention to improve telephone outreach. IMPLICATIONS TO CASE MANAGEMENT PRACTICE: There is a need to determine the most cost-effective way to increase TFU reach rates to prevent subsequent ED visits and hospital readmissions. There is also a need to develop a tool that can predict the hardest-to-reach patients posthospital discharge, so that case managers can meet those patients before leaving the hospital. In addition, it is important to identify alternative methods of "face-to-face" interactions during the COVID-19 pandemic crises. Case managers must explore ways with caution to leverage secured digital technology to bridge the gap of communicating with patients and family members when hospital visitations are limited.


Subject(s)
Community Health Services/organization & administration , Hospitalization , Patient Discharge , Telephone , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prospective Studies
8.
Sci Rep ; 10(1): 18149, 2020 10 23.
Article in English | MEDLINE | ID: covidwho-1387454

ABSTRACT

Antigens displayed on self-assembling nanoparticles can stimulate strong immune responses and have been playing an increasingly prominent role in structure-based vaccines. However, the development of such immunogens is often complicated by inefficiencies in their production. To alleviate this issue, we developed a plug-and-play platform using the spontaneous isopeptide-bond formation of the SpyTag:SpyCatcher system to display trimeric antigens on self-assembling nanoparticles, including the 60-subunit Aquifex aeolicus lumazine synthase (LuS) and the 24-subunit Helicobacter pylori ferritin. LuS and ferritin coupled to SpyTag expressed well in a mammalian expression system when an N-linked glycan was added to the nanoparticle surface. The respiratory syncytial virus fusion (F) glycoprotein trimer-stabilized in the prefusion conformation and fused with SpyCatcher-could be efficiently conjugated to LuS-SpyTag or ferritin-SpyTag, enabling multivalent display of F trimers with prefusion antigenicity. Similarly, F-glycoprotein trimers from human parainfluenza virus-type 3 and spike-glycoprotein trimers from SARS-CoV-2 could be displayed on LuS nanoparticles with decent yield and antigenicity. Notably, murine vaccination with 0.08 µg of SARS-CoV-2 spike-LuS nanoparticle elicited similar neutralizing responses as 2.0 µg of spike, which was ~ 25-fold higher on a weight-per-weight basis. The versatile platform described here thus allows for multivalent plug-and-play presentation on self-assembling nanoparticles of trimeric viral antigens, with SARS-CoV-2 spike-LuS nanoparticles inducing particularly potent neutralizing responses.


Subject(s)
Antigens/immunology , Betacoronavirus/metabolism , Nanoparticles/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antigens/genetics , Antigens/metabolism , Aquifex , Bacteria/enzymology , Bacterial Proteins/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections , Ferritins/genetics , Helicobacter pylori/metabolism , Humans , Mice , Multienzyme Complexes/genetics , Neutralization Tests , Pandemics , Pneumonia, Viral , Protein Multimerization , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Properties
9.
Immunity ; 54(8): 1869-1882.e6, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1293864

ABSTRACT

Vaccine-associated enhanced respiratory disease (VAERD) was previously observed in some preclinical models of severe acute respiratory syndrome (SARS) and MERS coronavirus vaccines. We used the SARS coronavirus 2 (SARS-CoV-2) mouse-adapted, passage 10, lethal challenge virus (MA10) mouse model of acute lung injury to evaluate the immune response and potential for immunopathology in animals vaccinated with research-grade mRNA-1273. Whole-inactivated virus or heat-denatured spike protein subunit vaccines with alum designed to elicit low-potency antibodies and Th2-skewed CD4+ T cells resulted in reduced viral titers and weight loss post challenge but more severe pathological changes in the lung compared to saline-immunized animals. In contrast, a protective dose of mRNA-1273 induced favorable humoral and cellular immune responses that protected from viral replication in the upper and lower respiratory tract upon challenge. A subprotective dose of mRNA-1273 reduced viral replication and limited histopathological manifestations compared to animals given saline. Overall, our findings demonstrate an immunological signature associated with antiviral protection without disease enhancement following vaccination with mRNA-1273.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Host-Pathogen Interactions/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biopsy , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Humans , Immunoglobulin G , Immunohistochemistry , Mice , Outcome Assessment, Health Care , RNA, Messenger , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Vaccines, Synthetic/administration & dosage
11.
PLoS Pathog ; 17(4): e1009431, 2021 04.
Article in English | MEDLINE | ID: covidwho-1172888

ABSTRACT

Tracking evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within infected individuals will help elucidate coronavirus disease 2019 (COVID-19) pathogenesis and inform use of antiviral interventions. In this study, we developed an approach for sequencing the region encoding the SARS-CoV-2 virion surface proteins from large numbers of individual virus RNA genomes per sample. We applied this approach to the WA-1 reference clinical isolate of SARS-CoV-2 passaged in vitro and to upper respiratory samples from 7 study participants with COVID-19. SARS-CoV-2 genomes from cell culture were diverse, including 18 haplotypes with non-synonymous mutations clustered in the spike NH2-terminal domain (NTD) and furin cleavage site regions. By contrast, cross-sectional analysis of samples from participants with COVID-19 showed fewer virus variants, without structural clustering of mutations. However, longitudinal analysis in one individual revealed 4 virus haplotypes bearing 3 independent mutations in a spike NTD epitope targeted by autologous antibodies. These mutations arose coincident with a 6.2-fold rise in serum binding to spike and a transient increase in virus burden. We conclude that SARS-CoV-2 exhibits a capacity for rapid genetic adaptation that becomes detectable in vivo with the onset of humoral immunity, with the potential to contribute to delayed virologic clearance in the acute setting.


Subject(s)
COVID-19 , Epitopes , Immunity, Humoral , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/genetics , COVID-19/immunology , Cell Line , Epitopes/genetics , Epitopes/immunology , Female , High-Throughput Nucleotide Sequencing , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
12.
Cell Rep ; 33(4): 108322, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-888426

ABSTRACT

Biotin-labeled molecular probes, comprising specific regions of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. Here, we design constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions include full-length spike ectodomain as well as various subregions, and we also design mutants that eliminate recognition of the angiotensin-converting enzyme 2 (ACE2) receptor. Yields of biotin-labeled probes from transient transfection range from ∼0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes are characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe is determined by cryoelectron microscopy. We also characterize antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike ectodomain probes.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/immunology , Molecular Probes/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Antibody Specificity/immunology , Binding Sites, Antibody/immunology , Biotinylation , COVID-19 , Cryoelectron Microscopy , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism
13.
bioRxiv ; 2020 Aug 22.
Article in English | MEDLINE | ID: covidwho-666088

ABSTRACT

Antigens displayed on self-assembling nanoparticles can stimulate strong immune responses and have been playing an increasingly prominent role in structure-based vaccines. However, the development of such immunogens is often complicated by inefficiencies in their production. To alleviate this issue, we developed a plug-and-play platform using the spontaneous isopeptide-bond formation of the SpyTag:SpyCatcher system to display trimeric antigens on self-assembling nanoparticles, including the 60-subunit Aquifex aeolicus lumazine synthase (LuS) and the 24-subunit Helicobacter pylori ferritin. LuS and ferritin coupled to SpyTag expressed well in a mammalian expression system when an N-linked glycan was added to the nanoparticle surface. The respiratory syncytial virus fusion (F) glycoprotein trimer - stabilized in the prefusion conformation and fused with SpyCatcher - could be efficiently conjugated to LuS-SpyTag or ferritin-SpyTag, enabling multivalent display of F trimers with prefusion antigenicity. Similarly, F-glycoprotein trimers from human parainfluenza virus-type 3 and spike-glycoprotein trimers from SARS-CoV-2 could be displayed on LuS nanoparticles with decent yield and antigenicity. Notably, murine vaccination with the SARS-CoV-2 spike-LuS nanoparticles elicited ~25-fold higher neutralizing responses, weight-per-weight relative to spike alone. The versatile platform described here thus allows for multivalent plug-and-play presentation on self-assembling nanoparticles of trimeric viral antigens, with SARS-CoV-2 spike-LuS nanoparticles inducing particularly potent neutralizing responses.

14.
SSRN ; : 3639618, 2020 Jul 21.
Article in English | MEDLINE | ID: covidwho-693326

ABSTRACT

Biotin-labeled molecular probes, comprising specific regions of the SARS-CoV-2 spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. To develop such probes, we designed constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions included full-length spike ectodomain as well as various subregions, and we also designed mutants to eliminate recognition of the ACE2 receptor. Yields of biotin-labeled probes from transient transfection ranged from ~0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes were characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe was determined by cryo-electron microscopy. We also characterized antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike-ectodomain probes. Funding: Support for this work was provided by the Intramural Research Program of the Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID). Support for this work was also provided by COVID-19 Fast Grants, the Jack Ma Foundation, the Self Graduate Fellowship Program, and NIH grants DP5OD023118, R21AI143407, and R21AI144408. Some of this work was performed at the Columbia University Cryo-EM Center at the Zuckerman Institute, and some at the Simons Electron Microscopy Center (SEMC) and National Center for Cryo-EM Access and Training (NCCAT) located at the New York Structural Biology Center, supported by grants from the Simons Foundation (SF349247), NYSTAR, and the NIH National Institute of General Medical Sciences (GM103310). Conflict of Interest: The authors declare that they have no conflict of interest. Ethical Approval: Peripheral blood mononuclear cells (PBMCs) for B cell sorting were obtained from a convalescent SARS-CoV-2 patient (collected 75 days post symptom onset under an IRB approved clinical trial protocol, VRC 200 - ClinicalTrials.gov Identifier: NCT00067054) and a healthy control donor from the NIH blood bank pre-SARS-CoV-2 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL